1

                                         SPM TRIAL EXAM 2010
                             MARK SCHEME ADDITIONAL MATHEMATICS PAPER 2

                                         SECTION A (40 MARKS)
No.                                         Mark Scheme           Total
                                                                  Marks

1     x = 1− 2y                                                    P1
      2(1 − 2 y ) + y + (1 − 2 y )( y ) = 5
                  2      2

                                                                   K1
      7y2 − 7y − 3 = 0

           − ( − 7) ±        ( − 7 ) 2 − 4( 7 )( − 3)
      y=                                                           K1
                               2( 7 )
      y = 1.324 , − 0.324
                                                                   N1
      x = −1.648 , 1.648
                                                                   N1
      OR

           1− x
      y=
            2
                                                                   P1
             1− x  1− x 
      2x 2 +       + x  =5
              2   2                                            K1

      7 x 2 − 19 = 0

           − ( 0) ±     ( 0) 2 − 4( 7 )( − 19)
      x=
                           2( 7 )
                                                                   K1
      x = −1.648 , 1.648
                                                                   N1
      y = 1.324 , − 0.324
                                                                   N1




                                                                    5
2



2   (a)
     f ( x ) = −( x 2 − 4 x − 21)
                                                                            K1
                         2
                     −4 −4
                                 2
                                     
    = − x 2 − 4 x +     −   − 21
       
                     2   2      
                                     
                                                                            N1
    = −( x − 2) + 25
               2




    (b) Max Value = 25                                                      N1

    (c)                        f ( x)

                             25                    (2,25)


                             21



                                                                        x
                       -3                      2                7

                                         Shape graph                        N1
                                         Max point                          N1
                         f ( x ) intercept or point (0,21)                  N1

    d) f ( x ) = ( x − 2) 2 − 25                                            N1




                                                                            7

3                            1     1
    a) List of Areas ; xy,     xy, xy                                       K1
                             4    16
                             1
         T2 ÷ T1 = T3 ÷ T2 =
                             4
                                                            1
         This is Geometric Progression and r =                              N1
                                                            4
                              n −1
                     1                  25
    b)       12800 ×               =
                     4                 512
3


              1
                    n −1
                                  1                                   K1
                         =
              4               262144
                    n −1           9
              1      1
                = 
              4      4
                n −1 = 9                                              K1
                   n = 10

                      12800                                           N1
              S∞ =
     (c)                 1
                      1−
                         4                                            K1
                        2                                             N1
                 = 17066 cm 2
                        3

                                                                      7

4   a)
    4 cos 2 − 1 − 1                                                   K1
    4 cos 2 − 2
    2( 2 cos 2 − 1)
                                                                      N1
    2 cos 2θ

    b) i)
                           2

                           1


                                             π                   2π
                           -1

                           -2
                                                                      P1
        -   shape of cos graph                                        P1
        -   amplitude (max = 2 and min = -2)                          P1
        -   2 periodic/cycle in 0 ≤ θ ≤ 2π
                   θ                                                  K1
    b) ii) y = 1 −        (equation of straight line)
                   π

            Number of solution = 4       (without any mistake done)   N1


                                                                      7
4


5   a)
     Score        0–9        10 – 19    20 – 29   30 – 39   40 – 49
     Number          3           4         9         9        10      N1
                    1         
                    ( 35) − 7 
                     4
    b) Q1 = 19.5 +            10                                    P1
                       9      
                              
                                                                    K1
          = 21.44

                3           
                 ( 35) − 25 
    Q3 = 39.5 +  4          10
                    10                                              K1
                            
                            
       = 40.75

    Interquatile range
    = 40.75 − 21.44                                                   K1
    = 19.31
                                                                      N1

                                                                      6

6   (a)    OQ = OA + AQ                                               K1
           OQ = (1 − m ) a + m b                                      N1
                          ~    ~



    (b)                   (
           PO + OQ = n PO + OR      )                                 K1
                4
           OQ = (1 − n ) a + 3n b                                     N1
                5        ~      ~



    (c)
                  4 4                                               K1
           (i)     − n  = 1 − m or 3n = m
                  5 5 
                      3      1
                  m=    ,n=                                           N1
                     11     11                                        N1
                           8    3                                     N1
           (ii)    OQ =      a+ b
                          11 ~ 11 ~


                                                                      8
5


7                   2

    (a)(i) Area = ∫ ( 2 y − y ) dy
                             2
                                                                               K1
                    0
                               2
                         y3 
                  =  y2 − 
                          3 0
                    4     2                                                    N1
                  = unit
                    3
                                   1       2

          (ii) Area region P = ∫ y dy + ∫ ( 2 y − y ) dy
                                                   2
                                                                               K1
                                   0       1
                                                           2
                           1                y3 
                         =  × 1× 1  +  y 2 −                               K1
                           2                3 1
                            7    2                                             N1
                        = unit
                            6
                       4 7 1          2
    (b) Area region Q = − = unit
                       3 6 6                                                   K1
                       7 1
                      = :
                       6 6
                                                                               N1
                      =7:1
                        1

    (c) Volume = π ∫ ( 2 y − y ) dy
                              2    2


                        0                                                      K1
                                       1
                      4 y3       y5 
                 =π        − y4 +                                            K1
                      3          5 0
                    8
                 = π unit
                              3

                   15                                                          N1



                                                                               10


8                   x       0.000      0.707    1.000          1.414   1.732   N1
                                         1
                  log10 y   1.000      1.330    1.477          1.672   1.826   N1

                                                                               P1
    (a)                                                                        P1
                                                                               P1

                                                                               P1
    Using the correct, uniform scale and axes
    All points plotted correctly
6


    Line of best fit                                       K1
                                                           N1
                   1
    (b) log10 y =     x log10 p + log10 k                  K1
                   3
    (i) use ∗ c = log10 k                                  N1
               k = 10.0
                      1.83 − 1.0            1
       (ii) use * m =            = 0.47977 = log10 p
                       1.73 − 0             3
                        p = 27.5

                                                           10


9
                 1                                       K1
    (a) ∠COD = 2  π 
                 6 
                  1                                        N1
                 = π = 1.047 rad
                  3
                             1       20                  K1
    (b) (i) Arc ABC = 10  π − π  or = π
                             3       3

                                    1                    K1
    Length AC = 202 − 102 or 20 cos  π rad 
                                    6      
                  20           1                           N1
    Perimeter =      π + 20 cos π = 38.267cm
                   3           6

     (ii) Area of shaded region =
                                    1
                                    2
                                      ( ) 2
                                          3
                                                   2 
                                      102  π − sin π 
                                                   3 
                                                           K1

                                   = 61.432cm2
                                                           N1
                     1
    (c) ∠CDE = ∠CAD = π rad ( alternate segments )         K1
                     6

    Area =
             1
             2
              ( )  1 
               102  π 
                   6 
                                                           K1
                                                           N1
          = 26.183cm2
7




                                                                              10



10   (a) T ( 4, 2 )                                                           P1
      6+ x          6+ y
             = 4,        =2                                                   K1
        2            2
     S ( 2, −2 )                                                              N1

     (b) y − 2 = 2 ( x − 4 )                                                 K1 K1
      y = 2x − 6                                                              N1

           3 x + 24        3 y + 24                                           K1
     (c)            = 2 or          = −2
               7               7

        10 38                                                               N1
     U − ,− 
        3   3 
                                                                              K1
            ( x − 2) + ( y + 2) = 2      ( x − 4) + ( y − 2)
                    2           2                2             2
     (d)
                                                                              N1
     3 x 2 + 3 y 2 − 28 x − 20 y + 72 = 0



                                                                              10


11   (a) (i) P ( X = 0 ) = C0 (0.6) (0.4) or P ( X = 1) = C1 (0.6) (0.4)      K1
                          10       0     10              10       1      9


             P ( X ≥ 2) = 1 − [ P ( X = 0) + P ( X = 1) ]
                             10     0     10 10      1      9
                      = 1 ─ C0 (0.6) (0.4) ─ C1 (0.6) (0.4)                   K1
                      = 0.9983                                                N1
                      2
          (ii) 800 ×                                                          K1
                      5
                                                                              N1
               = 320
     (b)(i) P ( −0.417 ≤ z ≤ 1.25 )                                           K1
            =1 − 0.3383 − 0.1057
            = 0.556                                                           N1
        (ii) P ( X > t ) = 0.7977
                  Z = −0.833                                                  P1
8


                         t − 4.5                              K1
               −0.833 =
                           1.2
               t = 3.5004                                     N1


                                                              10

                                                       Sub         Total
 No                                Mark Scheme
                                                      Marks        Mark

12a i)   1                                             K1           3
           (14) (5) sin θ = 21
         2
         θ = 36.87° or 36° 52 '

         ∠ BAC = 180° − 36.87°                         K1
               = 143.13° or 143° 8'
                                                       N1

 ii)     BC 2 = 142 + 52 − 2(14)(5) cos 143.13°        K1           2
         BC 2 = 333
         BC = 18.25 cm                                 N1

 iii)    sin θ sin 143.13°                             K1           2
               =
           5       18.25
         θ = 9.46° or 9° 28'                           N1

 b i)                               A'
                 14 cm                                 N1           1

                                   5 cm

         B'                  C'
 ii)     ∠ ACB = 180° − 143.13° − 9.46°                K1           2
               = 27.41°

         ∠ A ' C ' B ' = 180° − 27.41°
                       = 152.59° or 152° 35'           N1           10
9




                                                              Sub    Total
 No                               Mark Scheme
                                                             Marks   Mark
13 a)        4.55                     n                               3
        m=        × 100      or         × 100 = 112           K1
             3.50                     4
        m = 130                       n = RM 4.48            N1 N1


 b)     110(70) + * 130( x) + 120( x + 1) + 112(2)            K1      2
                                                   = 116.5
                     7 + x + x +1+ 2
        x=3                                                   N1


c i)    See 140                                               P1      3
        x (116.5)
                  = 140                                       K1
           100
               x = 120.17 / 120.2                             N1


 ii)     x                                                    K1      2
           × 100 = 140
        25
               x = RM 35                                      N1      10
10




                                                               Sub    Total
 No                                   Mark Scheme
                                                              Marks   Mark
15 a)   v 0 = − 30 ms −1                                       N1      1

 b)     − 3t 2 + 21t − 30 > 0                                  K1      2
        ( t − 5)( t − 2 ) < 0
        2<t<5                                                  N1


 c)     a = − 6t + 21                                          K1      3
        a 5 = − 6(5) + 21                                      K1
        a 5 = − 9 ms − 2                                       N1

 d)         − 3t 3    21t 2                                    K1      4
        S =        +         − 30t
              3         2
                    21t 2
        S = − t3 +         − 30t
                     2

                       21(3) 2                                 K1
        S 3 = − (3) +
                    3
                               − 30(3) = − 22.5          or
                         2
                       21(5) 2
        S 5 = − (5)3 +         − 30(5) = −12.5
                         2

        Total distance = − 22.5 + (− 22.5) − ( −12.5)          K1

                           = 32.5 m                            N1      10
11




Answer for question 14


                                         (a)       I
                                                   I.                      N1
        y                                          I
                                                   II.                     N1
                                                   I
                                                   III.
                                                                           N1
                                         (b)       Refer to the graph,

                                                   1 graph correct         K1
                                                   3 graphs correct              N1
  90                                               Correct area            N1
                                         (
                                         (c) i)
                                                                           N1

  80                                           ii) k = 10x + 20y

                                                   max point ( 20,50 )      N1
  70                                               Max fees        = 10(20) + 20(50)
                                                                                            K1
                                                                   = RM 1,200
                          (20,50)                                                      N1
                                                                                                 10
  60


  50


  40


  30


   20

  100            10      20         30   40               50          60        70          80        x
12




 log10 y    Answer for question 8




2.0



1.9

                                                                        X
1.8


1.7
                                                            X


1.6


1.5
                                                X


1.4

                                     X
1.3



1.2


 1.1
1.0 X      0.2       0.4       0.6       0.8    1.0   1.2   1.4   1.6       1.8
  0
                                                                                  x

More Related Content

PDF
5 marks scheme for add maths paper 2 trial spm
PDF
Maths Answer Ppsmi2006 F4 P2
PDF
F4 Answer Maths Ppsmi 2007 P2
PDF
Trial Sbp 2007 Answer Mm 1 & 2
PDF
F4 Final Sbp 2006 Math Skema P 1 & P 2
PDF
F4 Final Sbp 2007 Maths Skema P 1 & P2
PDF
09 trial melaka_s2
PDF
009 solid geometry
5 marks scheme for add maths paper 2 trial spm
Maths Answer Ppsmi2006 F4 P2
F4 Answer Maths Ppsmi 2007 P2
Trial Sbp 2007 Answer Mm 1 & 2
F4 Final Sbp 2006 Math Skema P 1 & P 2
F4 Final Sbp 2007 Maths Skema P 1 & P2
09 trial melaka_s2
009 solid geometry

What's hot (16)

PDF
One way to see higher dimensional surface
PDF
Chapter 07
PDF
Add Maths 2
PDF
Functions
PDF
001 basic concepts
PPT
Teknik menjawab-percubaan-pmr-melaka-2010
PPTX
Algebra 1 chapter 2 notes
DOC
Mth 4108-1 b (ans)
PDF
48 circle part 1 of 2
PDF
5HBC Conic Solutions
DOC
C1 january 2012_mark_scheme
PDF
calculo vectorial
PDF
Pc12 sol c04_4-4
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
DOC
Mth 4108-1 c (ans)
PDF
Trial spm kedah_2013_maths_paper2_[a]
One way to see higher dimensional surface
Chapter 07
Add Maths 2
Functions
001 basic concepts
Teknik menjawab-percubaan-pmr-melaka-2010
Algebra 1 chapter 2 notes
Mth 4108-1 b (ans)
48 circle part 1 of 2
5HBC Conic Solutions
C1 january 2012_mark_scheme
calculo vectorial
Pc12 sol c04_4-4
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Mth 4108-1 c (ans)
Trial spm kedah_2013_maths_paper2_[a]
Ad

Viewers also liked (15)

DOC
2 senarai rumus add maths k2 trial spm sbp 2010
DOC
Soalan ptk tambahan
PDF
3 add maths k2 trial spm sbp 2010
PDF
4 cover marks scheme add maths p2 trial spm sbp 2010
DOCX
3 add maths k2 trial spm sbp 2010
ZIP
Add10kelantan
DOC
Jawapan soalan ptk
DOC
Teknik Peningkatan Prestasi
PDF
2 senarai rumus add maths k2 trial spm sbp 2010
ZIP
Attachments 2012 04_1
DOC
Contoh soalan soalan ptk fungsi
PDF
Add maths module form 4 & 5
DOC
Skills In Add Maths
PDF
Chapter 1 functions
PDF
Format peperiksaan spm add math
2 senarai rumus add maths k2 trial spm sbp 2010
Soalan ptk tambahan
3 add maths k2 trial spm sbp 2010
4 cover marks scheme add maths p2 trial spm sbp 2010
3 add maths k2 trial spm sbp 2010
Add10kelantan
Jawapan soalan ptk
Teknik Peningkatan Prestasi
2 senarai rumus add maths k2 trial spm sbp 2010
Attachments 2012 04_1
Contoh soalan soalan ptk fungsi
Add maths module form 4 & 5
Skills In Add Maths
Chapter 1 functions
Format peperiksaan spm add math
Ad

Similar to 5 marks scheme for add maths paper 2 trial spm (20)

PDF
Add maths 2
PDF
S101-52國立新化高中(代理)
PDF
09 trial melaka_s1
DOC
09 Trial Penang S1
PDF
2 senarai rumus add maths k1 trial spm sbp 2010
PDF
Add Maths 1
DOC
Up1 math t 2012
DOC
Bowen prelim a maths p1 2011 with answer key
PDF
Pmr trial-2010-math-qa-perak
PDF
Chapter 14
DOC
2 senarai rumus add maths k1 trial spm sbp 2010
PDF
09 trial johor_s1
DOC
Add Math P1 Trial Spm Sbp 2007
PDF
1 cb02e45d01
PDF
F4 Maths Ppsmi 2007 P1
PDF
Ch10 29
DOCX
PDF
Tutorial 9 mth 3201
PDF
Astaño 2
PDF
Jacobi and gauss-seidel
Add maths 2
S101-52國立新化高中(代理)
09 trial melaka_s1
09 Trial Penang S1
2 senarai rumus add maths k1 trial spm sbp 2010
Add Maths 1
Up1 math t 2012
Bowen prelim a maths p1 2011 with answer key
Pmr trial-2010-math-qa-perak
Chapter 14
2 senarai rumus add maths k1 trial spm sbp 2010
09 trial johor_s1
Add Math P1 Trial Spm Sbp 2007
1 cb02e45d01
F4 Maths Ppsmi 2007 P1
Ch10 29
Tutorial 9 mth 3201
Astaño 2
Jacobi and gauss-seidel

More from zabidah awang (20)

PPT
Janjang aritmetik
ZIP
Add10sabah
ZIP
Add10terengganu
ZIP
Add10perak
ZIP
Add10ns
ZIP
Add10johor
PPT
Strategi pengajaran pembelajaran
PPT
Refleksi
PPT
Perancangan pengajaran pembelajaran
PPT
Penilaian
PPT
Pengurusan bilik darjah
PPT
Pengurusan murid
PPT
Penguasaan mata pelajaran
PPT
Penggunaan sumber dalam p & p
PPT
Pemulihan dan pengayaan
PPT
Pelaksanaan pengajaran pembelajaran
PPT
Pekeliling ikhtisas (spi)
PPT
Panitia mp
PPT
Khidmat kepakaran
PPT
Kegiatan gerko
Janjang aritmetik
Add10sabah
Add10terengganu
Add10perak
Add10ns
Add10johor
Strategi pengajaran pembelajaran
Refleksi
Perancangan pengajaran pembelajaran
Penilaian
Pengurusan bilik darjah
Pengurusan murid
Penguasaan mata pelajaran
Penggunaan sumber dalam p & p
Pemulihan dan pengayaan
Pelaksanaan pengajaran pembelajaran
Pekeliling ikhtisas (spi)
Panitia mp
Khidmat kepakaran
Kegiatan gerko

Recently uploaded (20)

PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
20th Century Theater, Methods, History.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Computer Architecture Input Output Memory.pptx
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Paper A Mock Exam 9_ Attempt review.pdf.
20th Century Theater, Methods, History.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Virtual and Augmented Reality in Current Scenario
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Computer Architecture Input Output Memory.pptx
AI-driven educational solutions for real-life interventions in the Philippine...
A powerpoint presentation on the Revised K-10 Science Shaping Paper
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
My India Quiz Book_20210205121199924.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Weekly quiz Compilation Jan -July 25.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
History, Philosophy and sociology of education (1).pptx
TNA_Presentation-1-Final(SAVE)) (1).pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)

5 marks scheme for add maths paper 2 trial spm

  • 1. 1 SPM TRIAL EXAM 2010 MARK SCHEME ADDITIONAL MATHEMATICS PAPER 2 SECTION A (40 MARKS) No. Mark Scheme Total Marks 1 x = 1− 2y P1 2(1 − 2 y ) + y + (1 − 2 y )( y ) = 5 2 2 K1 7y2 − 7y − 3 = 0 − ( − 7) ± ( − 7 ) 2 − 4( 7 )( − 3) y= K1 2( 7 ) y = 1.324 , − 0.324 N1 x = −1.648 , 1.648 N1 OR 1− x y= 2 P1 1− x  1− x  2x 2 +   + x =5  2   2  K1 7 x 2 − 19 = 0 − ( 0) ± ( 0) 2 − 4( 7 )( − 19) x= 2( 7 ) K1 x = −1.648 , 1.648 N1 y = 1.324 , − 0.324 N1 5
  • 2. 2 2 (a) f ( x ) = −( x 2 − 4 x − 21) K1  2 −4 −4 2  = − x 2 − 4 x +   −  − 21    2   2    N1 = −( x − 2) + 25 2 (b) Max Value = 25 N1 (c) f ( x) 25 (2,25) 21 x -3 2 7 Shape graph N1 Max point N1 f ( x ) intercept or point (0,21) N1 d) f ( x ) = ( x − 2) 2 − 25 N1 7 3 1 1 a) List of Areas ; xy, xy, xy K1 4 16 1 T2 ÷ T1 = T3 ÷ T2 = 4 1 This is Geometric Progression and r = N1 4 n −1 1 25 b) 12800 ×   = 4 512
  • 3. 3 1 n −1 1 K1   = 4 262144 n −1 9 1 1   =  4 4 n −1 = 9 K1 n = 10 12800 N1 S∞ = (c) 1 1− 4 K1 2 N1 = 17066 cm 2 3 7 4 a) 4 cos 2 − 1 − 1 K1 4 cos 2 − 2 2( 2 cos 2 − 1) N1 2 cos 2θ b) i) 2 1 π 2π -1 -2 P1 - shape of cos graph P1 - amplitude (max = 2 and min = -2) P1 - 2 periodic/cycle in 0 ≤ θ ≤ 2π θ K1 b) ii) y = 1 − (equation of straight line) π Number of solution = 4 (without any mistake done) N1 7
  • 4. 4 5 a) Score 0–9 10 – 19 20 – 29 30 – 39 40 – 49 Number 3 4 9 9 10 N1  1   ( 35) − 7  4 b) Q1 = 19.5 +  10 P1  9      K1 = 21.44 3   ( 35) − 25  Q3 = 39.5 +  4 10  10  K1     = 40.75 Interquatile range = 40.75 − 21.44 K1 = 19.31 N1 6 6 (a) OQ = OA + AQ K1 OQ = (1 − m ) a + m b N1 ~ ~ (b) ( PO + OQ = n PO + OR ) K1 4 OQ = (1 − n ) a + 3n b N1 5 ~ ~ (c) 4 4  K1 (i)  − n  = 1 − m or 3n = m 5 5  3 1 m= ,n= N1 11 11 N1 8 3 N1 (ii) OQ = a+ b 11 ~ 11 ~ 8
  • 5. 5 7 2 (a)(i) Area = ∫ ( 2 y − y ) dy 2 K1 0 2  y3  =  y2 −   3 0 4 2 N1 = unit 3 1 2 (ii) Area region P = ∫ y dy + ∫ ( 2 y − y ) dy 2 K1 0 1 2 1   y3  =  × 1× 1  +  y 2 −  K1 2   3 1 7 2 N1 = unit 6 4 7 1 2 (b) Area region Q = − = unit 3 6 6 K1 7 1 = : 6 6 N1 =7:1 1 (c) Volume = π ∫ ( 2 y − y ) dy 2 2 0 K1 1  4 y3 y5  =π  − y4 +  K1  3 5 0 8 = π unit 3 15 N1 10 8 x 0.000 0.707 1.000 1.414 1.732 N1 1 log10 y 1.000 1.330 1.477 1.672 1.826 N1 P1 (a) P1 P1 P1 Using the correct, uniform scale and axes All points plotted correctly
  • 6. 6 Line of best fit K1 N1 1 (b) log10 y = x log10 p + log10 k K1 3 (i) use ∗ c = log10 k N1 k = 10.0 1.83 − 1.0 1 (ii) use * m = = 0.47977 = log10 p 1.73 − 0 3 p = 27.5 10 9 1  K1 (a) ∠COD = 2  π  6  1 N1 = π = 1.047 rad 3  1  20 K1 (b) (i) Arc ABC = 10  π − π  or = π  3  3 1  K1 Length AC = 202 − 102 or 20 cos  π rad  6  20 1 N1 Perimeter = π + 20 cos π = 38.267cm 3 6 (ii) Area of shaded region = 1 2 ( ) 2 3 2  102  π − sin π  3  K1 = 61.432cm2 N1 1 (c) ∠CDE = ∠CAD = π rad ( alternate segments ) K1 6 Area = 1 2 ( ) 1  102  π  6  K1 N1 = 26.183cm2
  • 7. 7 10 10 (a) T ( 4, 2 ) P1 6+ x 6+ y = 4, =2 K1 2 2 S ( 2, −2 ) N1 (b) y − 2 = 2 ( x − 4 ) K1 K1 y = 2x − 6 N1 3 x + 24 3 y + 24 K1 (c) = 2 or = −2 7 7  10 38  N1 U − ,−   3 3  K1 ( x − 2) + ( y + 2) = 2 ( x − 4) + ( y − 2) 2 2 2 2 (d) N1 3 x 2 + 3 y 2 − 28 x − 20 y + 72 = 0 10 11 (a) (i) P ( X = 0 ) = C0 (0.6) (0.4) or P ( X = 1) = C1 (0.6) (0.4) K1 10 0 10 10 1 9 P ( X ≥ 2) = 1 − [ P ( X = 0) + P ( X = 1) ] 10 0 10 10 1 9 = 1 ─ C0 (0.6) (0.4) ─ C1 (0.6) (0.4) K1 = 0.9983 N1 2 (ii) 800 × K1 5 N1 = 320 (b)(i) P ( −0.417 ≤ z ≤ 1.25 ) K1 =1 − 0.3383 − 0.1057 = 0.556 N1 (ii) P ( X > t ) = 0.7977 Z = −0.833 P1
  • 8. 8 t − 4.5 K1 −0.833 = 1.2 t = 3.5004 N1 10 Sub Total No Mark Scheme Marks Mark 12a i) 1 K1 3 (14) (5) sin θ = 21 2 θ = 36.87° or 36° 52 ' ∠ BAC = 180° − 36.87° K1 = 143.13° or 143° 8' N1 ii) BC 2 = 142 + 52 − 2(14)(5) cos 143.13° K1 2 BC 2 = 333 BC = 18.25 cm N1 iii) sin θ sin 143.13° K1 2 = 5 18.25 θ = 9.46° or 9° 28' N1 b i) A' 14 cm N1 1 5 cm B' C' ii) ∠ ACB = 180° − 143.13° − 9.46° K1 2 = 27.41° ∠ A ' C ' B ' = 180° − 27.41° = 152.59° or 152° 35' N1 10
  • 9. 9 Sub Total No Mark Scheme Marks Mark 13 a) 4.55 n 3 m= × 100 or × 100 = 112 K1 3.50 4 m = 130 n = RM 4.48 N1 N1 b) 110(70) + * 130( x) + 120( x + 1) + 112(2) K1 2 = 116.5 7 + x + x +1+ 2 x=3 N1 c i) See 140 P1 3 x (116.5) = 140 K1 100 x = 120.17 / 120.2 N1 ii) x K1 2 × 100 = 140 25 x = RM 35 N1 10
  • 10. 10 Sub Total No Mark Scheme Marks Mark 15 a) v 0 = − 30 ms −1 N1 1 b) − 3t 2 + 21t − 30 > 0 K1 2 ( t − 5)( t − 2 ) < 0 2<t<5 N1 c) a = − 6t + 21 K1 3 a 5 = − 6(5) + 21 K1 a 5 = − 9 ms − 2 N1 d) − 3t 3 21t 2 K1 4 S = + − 30t 3 2 21t 2 S = − t3 + − 30t 2 21(3) 2 K1 S 3 = − (3) + 3 − 30(3) = − 22.5 or 2 21(5) 2 S 5 = − (5)3 + − 30(5) = −12.5 2 Total distance = − 22.5 + (− 22.5) − ( −12.5) K1 = 32.5 m N1 10
  • 11. 11 Answer for question 14 (a) I I. N1 y I II. N1 I III. N1 (b) Refer to the graph, 1 graph correct K1 3 graphs correct N1 90 Correct area N1 ( (c) i) N1 80 ii) k = 10x + 20y max point ( 20,50 ) N1 70 Max fees = 10(20) + 20(50) K1 = RM 1,200 (20,50) N1 10 60 50 40 30 20 100 10 20 30 40 50 60 70 80 x
  • 12. 12 log10 y Answer for question 8 2.0 1.9 X 1.8 1.7 X 1.6 1.5 X 1.4 X 1.3 1.2 1.1 1.0 X 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 x